
DOI 10.1140/epja/i2004-10251-1

Eur. Phys. J. A 25, 65–73 (2005) THE EUROPEAN
PHYSICAL JOURNAL A

Modified Boltzmann Transport Equation and Freeze Out

L.P. Csernai1,2, V.K. Magas3, E. Molnár1, A. Nyiri1, and K. Tamosiunas1,a

1 Section for Theoretical and Computational Physics, and Bergen Computational Physics Laboratory, BCCS-Unifob, University
of Bergen, Allegaten 55, 5007 Bergen, Norway

2 MTA-KFKI, Research Institute of Particle and Nuclear Physics, H-1525 Budapest 114, P.O. Box 49, Hungary
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Abstract. We study the Freeze-Out process in high-energy heavy-ion reaction. The description of the
process is based on the Boltzmann Transport Equation (BTE). We point out the basic limitations of
the BTE approach and introduce the Modified BTE. The Freeze-Out dynamics is presented in the 4-
dimensional space-time in a layer of finite thickness, and we employ the Modified BTE for the realistic
Freeze-Out description.

PACS. 25.75.-q Relativistic heavy-ion collisions – 51.10.+y Kinetic and transport theory of gases –
25.75.Ld Collective flow

1 Introduction

The Freeze Out (FO) is an important phase of dynami-
cal reactions. It is of primary importance in case of rapid,
dynamical processes where the originally strongly inter-
acting and locally equilibrated matter undergoes a rapid
explosive process, in which matter properties change con-
siderably, the interaction vanishes in a relatively small
space-time layer, and local equilibrium disappears. The
connection of the kinetic description of this process and
the Boltzmann Transport Equation (BTE) raised consid-
erable attention recently [1,2].

The problem is to calculate the phase-space (PS) dis-
tribution of the post-FO particles. Earlier such kinetic
FO calculations were performed in one-dimensional mod-
els [3–6], where the dynamics was governed by two con-
stants: a re-thermalization parameter and a FO param-
eter. This latter one is governed by the phase-space FO
probability, which was constructed recently in a fully co-
variant form [7].

The FO is a kinetic process and one would think
it can be handled perfectly by using the Boltzmann
Transport Equation, which may describe equilibrium and
non-equilibrium processes equally well in a 4-dimensional
space-time volume element, which is usually a FO layer.
This work and ref. [2] follows this approach. This finite
layer is frequently idealized as a 3-dimensional FO hyper-
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surface. In refs. [1,8] the author analyzes the features of
this idealized discontinuity1.

The FO can also be simultaneous with a phase tran-
sition, especially when the phase transition reduces the
number of degrees of freedom and contributes to the FO
process this way. As an example let us describe a grad-
ual hadronization and FO of the Quark-Gluon Plasma in
a layer, where quasi-hadrons or hadrons are formed, the
new particles gradually cease to interact, their PS distri-
bution changes and the matter gradually freezes out.

1 In refs. [1,8] the author discusses two physically different
situations, which should be clearly separated, otherwise one
can run into some confusion. The first one is the “transition”
from the hydrodynamical description of the system created in
heavy-ion collisions to the cascade description. This is not a
physical phase transition, just a switch from one theoretical
model to another, which can be justified, strictly speaking,
only in the region where both models give adequate descrip-
tion of the system, i.e. the same result for the all possible ob-
servables. In this overlapping ST region such a transition can
be realized at any infinitely narrow dividing hypersurface. On
the other hand, for the case of a real physical phase transition,
like FO or/and hadronization, the infinitely narrow dividing
hypersurface is an idealization of the layer of some finite thick-
ness, as was discussed above. We basically assume that if we
use the correct particle distributions on the “post” side, we do
not make a big mistake changing distributions to the new ones
sharply instead of changing them gradually in some layer.
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Free hadrons, which are formed, do not interact with
anything and propagate directly to the detector. Al-
though, the formation of these fragments can be most suit-
ably described in a coalescence or recombination model,
most finally observed baryon abundances follow the sta-
tistical model predictions. The reason is simple: the for-
mation cross-sections are governed by the same statisti-
cal factors as the thermal equilibrium, because the radial
part of the formation probability for s-wave hadrons is
about the same. Exceptions are the excited states, e.g.
the p-wave hadrons like Λ(1520), which have a smaller ra-
dial form factor and, consequently, they are suppressed
in comparison to the statistical equilibrium abundance,
which is sensitive to their weight only.

In this work we do not discuss issues related to si-
multaneous hadronization and FO, for simplicity we con-
sider one type of particles only and study their kinetic
evolution. If hadronization happens simultaneously with
kinetic FO, the kinetic description presented here can
and should be extended. For example, some features of
the fast hadronization and FO of supercooled Quark-
Gluon Plasma, which might be created in ultra-relativistic
heavy-ion collisions (for the first time such a scenario was
proposed in refs. [9,10]) are discussed in refs. [11,12]. The
simultaneous FO and hadronization can be described in
an idealized way by using the 3-dimensional FO hyper-
surface approach as suggested in ref. [1]. Then, this sim-
plified approach makes it possible to solve some of the
basic problems. The simultaneous hadronization and FO
can also be handled by assuming idealized hadronization
at the hypersurface, which is the inside boundary of the
FO layer of finite thickness, L. In this way the present
paper is also relevant for the simultaneous hadronization
and FO problem.

In the present paper we analyze the situation, discuss
the applicability of BTE, and point out the physical causes
which limit the applicability of the BTE for describing FO.
And the aim is to show how we can overcome this obsta-
cle. For this purpose we will modify the BTE and then will
show how one can derive out of it a simple one-dimensional
kinetic model, similar to the one used by some of the au-
thors in earlier calculations.

2 Particles emerging from Freeze-Out

hypersurface

Not only in heavy-ion reactions, but in many dynami-
cal processes particle creation (or condensation) happens
mostly in a directed way: the phenomenon propagates into
some direction, i.e. it happens in some layer or front (like
detonations, deflagrations, shocks, condensation waves or
FO across a layer with space-like normal). The reason is
that neighboring regions in the front may interact to min-
imize the energy of the front by evening it out, providing
energy to neighboring regions to exceed the threshold con-
ditions. Even in those relativistic processes that are time-
like (have time-like normal), and so the neighboring points
of a front cannot be in causal connection, the dynamical

processes may, and frequently do, have a direction. See
the example in ref. [13]. This can be a simple consequence
of the initial and boundary conditions.

These fronts have a characteristic direction (or normal,
dσµ). Let us look at an example when particles in a do-
main of the space-time (ST) are characterized by a phase-
space distribution, f(x, p). Then the space-time current
density of these particles, Nµ(x) can be described as

Nµ =

∫

d3p

p0
pµ f(x, p) . (1)

The net number of particles crossing an arbitrary hyper-
surface element dσµ is

dS = Nµdσµ =

∫

d3p

p0
pµ dσµ f(x, p) . (2)

If we want to describe the FO, particles are allowed to
cross the FO hypersurface “outwards” only, i.e., only in
the direction of dσµ. Thus,

SFO =

∫

Nµ
FOdσµ

=

∫ ∫

d3p

p0
pµ dσµ fFO(x, p)Θ(pµ dσµ) , (3)

where either the phase-space distribution, fFO(x, p),
should have only particles with momenta pointing out-
wards (post-FO distribution), and/or this is secured by
the step function Θ(pµ dσµ). Equation (3) yields the mod-
ified Cooper-Frye FO formula, where fFO(x, p) should be
determined in such a way that all conservation laws across
the FO hypersurface are satisfied and overall entropy does
not decrease! [3,14,15]

3 Non-isotropic particle sources

The FO fronts or FO layers are not necessarily narrow,
but they have a characteristic direction (or normal, dσµ),
and it is more realistic to assume a continuous, 4-volume
FO in a layer (or domain) of the space-time. At the in-
side boundary of this layer no particles are frozen out yet,
while at the outside boundary hypersurface all particles
are frozen out and no interacting particles remain (see
fig. 1). For the sake of simplicity let us also assume that
the total particle number is conserved, even if simultane-
ous freeze out, hadronization and particle formation are
frequently discussed.

Thus, while the total number of particles remains con-
stant, in this domain, the number of interacting particles
decreases and the number of frozen out or free particles
increases:

Nµ(x) = Nµ
i (x) +Nµ

f (x) , (4)

∂µN
µ(x) = 0 , (5)

∂µN
µ
i (x) = − ∂µN

µ
f (x) . (6)
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Fig. 1. Space-time picture of the FO process. At early times,
centrally in the collision region we have intensively interacting
matter, which is equilibrated and thermalized, this is the fluid-
dynamical domain bordered by the S2 hypersurface, which has
a normal 4-vector dσµ. The location of this surface is given
by the fact that the interacting fluid is cooling and expanding,
and reaches a point when interactions are not frequent enough
to maintain full thermal and hydrodynamical equilibrium lo-
cally. Some particles will not interact any more beyond this
hypersurface. Later on in the expansion and cooling we reach
another hypersurface, S1. By reaching this surface on their way
all particles become non-interacting, or free. Thus, when reach-
ing this surface the FO process is completed. The momentum
distribution of particles does not change any more. This is the
(post-) FO distribution

Then the space-time (ST) volume element, d4x, in the
layer of interest can be converted into d4x −→ dsµ dσµ,
where dsµ is the length element in the direction of the
4-vector dσµ , which can be space-like or time-like, i.e.:
time-like, dσµ dσµ = +1, or space-like, dσµ dσµ = −1.

Let us also assume that the ST domain, where free-
particle formation happens, is a layer, which is relatively
narrow compared to the bulk of the matter (see fig. 1).
Assume also that the boundaries of this layer are parallel
or approximately parallel, and the thickness of the layer
does not vary much. Under these conditions one can de-
scribe the change of the free-particle number in the layer
via the divergence of the 4-current of the particles by the
expression:

∆Ni =

∫

d4x ∂µN
µ
i (x)

=

∫

dsµ dσµ

∫

d3p
pµ

p0
∂µfi(x, p) . (7)

According to the physical assumptions discussed above,
the 4-divergence is maximal in the direction of dσν , and
negligible in the other 3 orthogonal directions.

The emission or freeze-out probability may depend on
physical processes, cross-sections, transition rates, and the
actual PS distributions. Furthermore, fi can be space-time
dependent, and must be determined self-consistently dur-
ing the detonation, deflagration or FO process [3–6,16].

We will return to realistic FO probabilities later in
sect. 7.

4 Freeze Out and the Boltzmann Transport

Equation

One can derive the Boltzmann Transport Equation from
the conservation of charges in a ST domain [17], ∆4x,
assuming the standard conditions: i) only binary colli-
sions are considered, ii) we assume “molecular chaos”, i.e.
that the number of binary collisions at position x is pro-
portional to f(x, p1) × f(x, p2), and that iii) f(x, p) is a
smoothly varying function compared to the mean free path
(m.f.p.). The conservation laws lead then to the require-
ment that the integral of the 4-divergence of conserved
charges should vanish

∫

∆4x

∫

∆3p

d4x
d3p

p0
pµ∂µf(x, p) = 0 . (8)

As the choice of the ST 4-volume element is arbi-
trary, we obtain the differential form of the conservation
law, which describes the evolution of the PS distribution,
f(x, p), of a particle with momentum p. However, if we
take into account that particles can scatter into this PS
volume element around p, or can scatter out from this
volume element, we have to add Gain and Loss collision
terms to the conservation equation (see, e.g., sect. 3.2 of
ref. [17]):

pµ∂µf(p) =
1

2

∫

12D4f(p1)f(p2)W
pp4

p1p2

−1

2

∫

2D34f(p)f(p2)W
p3p4

pp2
. (9)

Here we assume elementary collisions where in the
initial-state two particles collide with momenta p1 and p2
into a final state of two particles with momenta p3 and
p4. In case of the Gain term the particle described by the
BTE, with momentum p (without an index), is one from
the two final-state particles, while in case of the Loss term
this particle is one of the initial-state particles. This is in-
dicated by the indexes of the invariant transition rate [17].
We integrate over the momenta of the other three particles
participating in this binary collision. We use the notation

12D3 ≡
d3p1
p01

d3p2
p02

d3p3
p03

.

We can shorten the notation further by suppressing the ar-
guments of the PS distribution functions, and the indexes
of the momenta in the argument will be carried by the dis-
tribution function f and the collision term W pp4

p1p2
≡W p4

12 :

pµ∂µf =
1

2

∫

12D4f
i
1f

i
2W

p4
12 −

1

2

∫

2D34f
if i2W

34
p2 . (10)

Now, aiming for the description of the FO process, let us
split up the distribution function, f , into f = f i + ff ,
where ff is the phase-space distribution function of the
“free” or frozen-out particles, which do not collide any
more, while f i is the interacting component [2,3]. Thus,
the FO process is represented here by gradually populat-
ing and building up the “free” component, while draining
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particles from the interacting component. As the parti-
cles belonging to the free component may not collide any
more, they do not appear in the initial-state components
of collision integrals!

pµ∂µ(f
i+ ff ) =

1

2

∫

12D4f
i
1f

i
2W

p4
12 −

1

2

∫

2D34f
if i2W

34
p2 .

(11)

The Gain term, f i1 f i2 W p4
12 populates both the interact-

ing, f i, and free, ff , components, so we will introduce a
FO probability, which “feeds” the free component. The
probability is phase-space dependent. In principle it may
depend on the positions and momenta of both incoming
particles, and it can weight the outgoing phase space for
one (or both) outgoing particles. In the most simple case
we have to assume that it depends at least on the mo-
mentum of the outgoing particle, which belongs to the
component ff : PFO(x, p) ≡ Pf .

pµ∂µ(f
i + ff ) =

1

2

∫

12D4f
i
1f

i
2

[

PfW p4
12 + (1− Pf )W p4

12

]

−1

2

∫

2D34f
if i2W

34
p2 . (12)

Now, we can separate the two components into two equa-
tions. The sum of these two equations returns the com-
plete BTE above:

pµ∂µf
f =

1

2

∫

12D4f
i
1f

i
2 PfW p4

12 , (13)

pµ∂µf
i =

1

2

∫

12D4f
i
1f

i
2 (1−Pf )W p4

12 −
1

2

∫

2D34f
if i2W

34
p2

(14)
The free component does not have a Loss term, because
particles in the free component cannot collide, and so,
the free component cannot lose particles due to collisions.
Rewriting the second equation yields

pµ∂µf
i = −1

2

∫

12D4f
i
1f

i
2PfW p4

12 +
1

2

∫

12D4f
i
1f

i
2W

p4
12

−1

2

∫

2D34f
if i2W

34
p2 . (15)

The first term is a drain term, describing the “escape” or
“freeze out” of particles from the interacting component.
It is the inverse of the Gain term (or source term) for the
free component, ff . The last two terms are influencing the
interacting term by redistributing particles in the momen-
tum space. These latter two terms do not include the FO
probability factors! Thus, these two terms drive the inter-
acting component towards re-thermalization. As a usual
approximation these two terms can be approximated by
the relaxation time approximation as in refs. [4–6]. Thus,
the BTE describing FO in this situation reads as

pµ∂µf
f =

1

2

∫

12D4f
i
1f

i
2PfW p4

12 , (16)

pµ∂µf
i = −1

2

∫

12D4f
i
1f

i
2PfW p4

12 + p0
f ieq − f i

τrel
. (17)

The first equation, eq. (16), describes the gain of the free
component, i.e. that part of the earlier Gain term, which
will not collide any more. The first term in the second
equation has the same value with opposite sign. This de-
scribes the part of f i, which is leaving the interacting com-
ponent and does not take part in the re-thermalization.

In fact, the above-described collision integrals can be
highly simplified, by exploiting the symmetries and con-
servation laws in the invariant transition rate, W , so that
only one phase-space integral remains to be executed (see
sect. 3.3 and eq. (3.27) in ref. [17]).

5 Modified Boltzmann Transport Equation

Now, the question arises: can the BTE handle realistically
the FO process? We have seen that the structure of the ki-
netic equations, used earlier to describe FO [3–6], and the
separation of the “escape” and “re-thermalization” terms
come out in a simple, straightforward way from the BTE.

However, the usual structure of the collision terms in
the BTE are not adequate for describing rapid FO, in a
layer which is comparable to the m.f.p. If we assume the
existence of such a layer, this immediately contradicts as-
sumption iii): the change is not negligible in the direction
of dσν . Assumption ii) of “molecular chaos” is also vio-
lated in a FO process because the number of collisions is
not proportional with f(x, p1)×f(x, p2), but it is delocal-
ized in the normal direction with f(x+λ, p1)×f(x−λ, p2).
(The fact that the FO is a delocalized kinetic process
was already used in ref. [2] when integrals along the path
of propagating particles were introduced, but the conse-
quences regarding the details of the collision terms and
the validity of the molecular-chaos assumption were not
discussed.)

Based on the above considerations, one might conclude
that the changes of the distribution function are medi-
ated by the transfer of particles, and, consequently, only
slowly propagating changes are possible. I.e., the front
propagates slowly, and its normal, dσµ, is always space-
like. This was a common misconception, until recently,
where all “superluminous” shock, detonation, deflagration
fronts or discontinuities were considered unphysical based
on early studies [18]. However, it was shown recently, that
discontinuous changes may happen simultaneously in spa-
tially neighboring points, i.e. the normal of the disconti-
nuity hypersurface can be time-like [13,19]. This applies
also to the FO process. Thus, the direction of the charac-
teristic or dominant change, dσµ, may be both space-like
and time-like in the FO process.

From all the processes mentioned above (i.e. shocks,
detonations, deflagrations etc.) the FO is the most spe-
cial one. Because the number of interacting particles is
constantly decreasing as the FO proceeds and correspond-
ingly the m.f.p. is increasing and, in fact, it reaches infin-
ity when the complete FO is finished. This simply means
that, strictly speaking, we cannot make FO in a finite layer
of any thickness, smooth enough to be modeled with the
BTE. It is also obvious that if FO has some characteristic
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f(x, p)
x
=

∫ t

t0
dt1

∫

d3x1δ
3(~x− ~x1 − ~v(t− t1))f(x1, p)e

−

∫

t
t1

dt2
∫

d3x2σn(x2)vδ3(~x2−~x1−~v(t2−t1))

∫ t

t0
dt1

∫

d3x1δ3(~x− ~x1 − ~v(t− t1))e
−

∫

t
t1

dt2
∫

d3x2σn(x2)vδ3(~x2−~x1−~v(t2−t1))
, (19)

length scale (thickness of the layer or even some charac-
teristic parameter for infinitely long FO [4]), it is not pro-
portional with the m.f.p., because the m.f.p. increases as
the density of the interacting component becomes smaller,
while FO becomes faster in this limit, so its characteristic
scale should decrease.

Since there is a strong gradient in the FO direction,
the free component rapidly increases, while the interact-
ing component decreases along the FO direction, we can
conclude that the collision terms in their usual form are
not adequate to describe the FO process, particularly not
the “escape” probability or “escape” term. The appropri-
ate equations to describe this system can be a Modified
Boltzmann Transport Equation (MBTE) [20]:

pµ∂µf(p) =
1

2

∫

12D4f(x, p1)
x
f(x, p2)

x
W pp4

p1p2

−1

2

∫

2D34f(x, p)
x
f(x, p2)

x
W p3p4

pp2
, (18)

where f(x, pi)
x
is an average over all possible origins of

the particle in the backward lightcone of the ST point
x = (t, ~x):

see eq. (19) above

where δ3(~x− ~x1−~v(t− t1)) fixes the ST trajectory, along
which the particles with given momentum can reach the
ST point x, time t0 is given by the initial or boundary
conditions, ~v = ~p/p0 (v = |~v|), and the exponential factor
accounts for the probability not to have any other collision
from the origin x1 till x. In the arguments of exponents
n(x) is the particle density in the calculational frame,
n(x) = N0(x), and σ is the total scattering cross-section.
After performing integrations over d3x with the help of
δ-functions we can write the MBTE equation in the form

pµ∂µf(p) =

1

2

∫

12Dt1t2
4 f(t1, p1)G(t1, p1)f(t2, p2)G(t2, p2)W

pp4

p1p2

−1

2

∫

2Dt1t2
34 f(t1, p)G(t1, p)f(t2, p2)G(t2, p2)W

p3p4

pp2
,

(20)

where

12Dt1t2
4 =

1

2

∫ t

t0

dt1

∫ t

t0

dt2

∫

12D4 , (21)

f(t1, p) = f(t1, ~x− ~v(t− t1), p) , (22)

G(t1, p) =
e
−

∫

t

t1
dt2σn(t2,~x−~v(t−t2))v

C(x, p)
, (23)

C(x, p) =

∫ t

t0

dt1e
−

∫

t

t1
dt2σn(t2,~x−~v(t−t2))v . (24)

Interestingly, Molecular Dynamics models do not use
the local-molecular-chaos assumption, and follow the tra-
jectories of the colliding particles instead. Thus, such mod-
els do actually solve the MBTE, and not the BTE, al-
though this was not realized before.

The obvious limit in which the MBTE is reduced to
the BTE is a completely homogeneous ST distribution
function (i.e. no external forces, no boundaries). Another
possibility is the hydrodynamic limit, λ = 1/σn → 0,
when the exponential factors (23), (24) will be reduced to
∼ δ(t−t1,2), reproducing the BTE after t1, t2 integrations.

The symmetries and the assumption of local molecu-
lar chaos lead to the consequence that local conservation
laws can be derived from the original BTE, i.e. ∂µT

µν = 0
and ∂µN

µ = 0, where T and N are given as integrals
over the single-particle PS distribution and the momen-
tum. Although now we have delocalized the equations,
the local conservation laws can still be derived in the
same way, as was shown in ref. [20]. The very essential
property of the BTE is the Boltzmann H-theorem. Here
the situation is more complicated and the behaviour of
the entropy current in the MBTE is a subject of future
studies. Nevertheless, for adiabatic expansion (Sµ

,µ = 0)
a sufficient condition is the same as for BTE, namely
f(x, p1)f(x, p2) = f(x, p3)f(x, p4) [20].

The obtained MBTE is considerably more complicated
than the original BTE. In order to proceed, let us make a
further simplification assuming that all the particles arrive
into the collision point x from one m.f.p. distance [21] (in-
stead of allowing them to arrive from any distance with the
corresponding probabilities, as is done in eq. (19)). This
then leads to the following simplified equation, which, nev-
ertheless, is still adopted to the strongly non-homogeneous
systems that are much better than the original BTE:

pµ∂µf(p) =
1

2

∫

12D4f(x̃1, p1)f(x̃2, p2)W
pp4

p1p2

−1

2

∫

2D34f(x̃, p)f(x̃2, p2)W
p3p4

pp2
, (25)

where xk is the origin of colliding particles, i.e. the ST
point where the colliding particles were colliding last,

x̃k = x − ukτ(x,~vk/vk), u
µ
k = (γk, γk~vk), γ = 1/

√

1− ~v 2

and ~vk = ~pk/p
0
k. Here τ is the collision time, such that

|~v|τ(x,~v/v) = λ(x,~v/v). Note that the m.f.p. depends not
only on the position, but also on the direction of the par-
ticle motion. This is an essential modification if the PS
distribution has a large gradient in the space-time. This
gradient defines a ST 4-vector characterizing the direction
of the process, dσµ. In ref. [2] the direction dσµ is also in-
troduced; however, it is not discussed why and it is not
connected to the delocalization of the BTE.
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For the FO modeling, repeating for the eq. (25) the
same step as for BTE above, we then obtain

pµ∂µf
f (x, p) =

1

2

∫

12D4PfW p4
12 f i(x̃1, p1)f

i(x̃2, p2) ,

(26)

pµ∂µf
i(x, p) = −1

2

∫

12D4PfW p4
12 f i(x̃1, p1)f

i(x̃2, p2)

+ p0
f ieq − f i

τrel
. (27)

A simple general solution of the MBTE (26), (27) can-
not be given but it serves as a basis for simplified, phe-
nomenological kinetic models describing the FO process.

6 Approximate kinetic Freeze-Out models

In this section our goal is to present a schematic deriva-
tion of a simple kinetic FO model used by some of the
authors earlier. This represents only one particular possi-
bility and the general MBTE equation can be solved or
approximated also in other ways. The approximation we
present is one of the simplest possibilities, but not neces-
sarily the most realistic one.

If the ST distribution is non-uniform and the direction
of the steepest gradient can be clearly identified, one may
replace one (or more) of the integrals over d3p1 (or d3p2)
by space-time integrals over the origins of the incoming
particle(s), d4x′, requiring that the particle reaches the ST
point, x, when needed. This requirement determines pµ for
a given x′µ. It is reasonable to assume that after converting
some of the integrals to ST integrals and performing them,
we get an effective FO term reflecting the properties of the
local PS distribution, transition rate, the ST configuration
(e.g., gradient of density change, and its direction) and
characteristics of the FO layer.

Let us return to the basic integral form of the kinetic
theory, eqs. (26), (27), and discuss the FO probability.
We will study eq. (26) without performing the integrals
in a formal way, rather illustrating the procedure giving a
better insight into the problem.

When we are in the FO layer, close to the bound-
ary of complete FO we have to calculate here the colli-
sion rate. According to the MBTE this depends on the
PS distribution of the incoming particles at their origins,
f i(x̃1, p1) f i(x̃2, p2). Assume that the FO direction points
in the direction of dσµ, as is shown in fig. 2. On the
right-hand side of the collision point the density of in-
teracting particles is low or zero, while on the left-hand
side it is larger, closer to the pre-FO value (see fig. 2).

It is more probable, that particles arrive to the colli-
sion point x from the left side, because of the higher den-
sity of the interacting particles on the left. Consequently,
most outgoing particles leave to the right. Thus, the colli-
sion rate at x depends on the conditions of what we have
around x̃1 and x̃2, i.e. deeper inside the interactive mat-
ter. Consequently, the collision rate is still higher than the

Fig. 2. The plot of one of the last collisions at x, shown in
the spatial cross-section of the FO layer. Particles arrive from
positions x̃1 and x̃2 to point x with momenta p1 and p2. Within
the FO layer of thickness, L, the density of interacting particles
gradually decreases (indicated by shading) and disappears at
the outside boundary, S1 (thin line) of the layer. R.h.s. from
this boundary there are no interacting particles. Particles can
reach x from a region closer than the mean free path (m.f.p.
indicated by the dashed line), but only from places where the
interacting particle density is still not zero, i.e. mostly from
the left. The inside boundary of the FO layer, S2 (thick line)
indicates the points where the FO starts. Left of this line there
is only interacting matter and the FO probability is assumed
to be zero for collisions happening in the interacting region.

conditions at x could secure! Then Pf determines what
fraction of the outgoing particles will freeze out from those
which collided. The collision rate does not go to zero even
if we are at the outside boundary of the FO layer, because
particles still can arrive from the left where we still have
interacting particles. As there are no interacting particles
on the right-hand side, all of these particles should freeze
out, i.e. Pf → 1, when x→ L (see fig. 2).

Let us execute two of the phase-space integrals for one

incoming and one outgoing particle,
∫

d3p2

p0

2

d3p4

p0

4

pµ∂µf
f =

1

2

∫

12D4f
i
1f

i
2 PfW p4

12 (28)

=
1

2
Q2V4

∫

d3p1
p01

f i(x̃1, p1) PfW p4̄
12̄

, (29)

where Q2 =
∫

d3p2

p0

2

f i(x̃2, p2) and V4 are invariant scalars.

Equation (29) resembles eq. (3.27) in ref. [17], but one
of the incoming-particle distributions, f i(x̃2, p2), is inte-
grated out, and leads to an integral quantity, Q2. This can
be approximated by the invariant scalar density at x̄2, i.e.

Q2 ≈ n2(x̄2) .

Here V4 is not known directly, but can in principle
be calculated based on the distributions, f i(x̃1, p1) and
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f i(x̃2, p2), and the transition rate, W . The resulting tran-
sition rate will then be averaged over particles 2 and 4,

W p4̄
12̄

:

pµ∂µf
f (x, p) =

1

2
Q2V4

∫

d3p1
p01

f i(x̃1, p1)PfW p4̄
12̄

. (30)

As we can see, this resulting equation is delocalized —in
a rapid dynamical process the distributions at x and x̃1
are not the same, as was discussed above.

Now, eq. (30) can be integrated either in the x̃1-space,
or in the p1-space, as the two are connected by the fact
that a particle should travel from x̃1 to x with momentum
p1. We should integrate over all x̃1 points from where
one can reach x in a collision time, τ(x,~v/v). This brings
in information about the local spatial gradient of the ST
distribution function, as we discussed above. The collision
terms in the original BTE contain only local information,
which is assumed to be isotropic (or slowly changing), so
it is neglected.

In addition, the FO probability, Pf , may include inte-
grated information about the FO process, e.g. the proba-
bility not to collide with anything on the way out, reason-
ably should depend on the integral number of interacting
particles on the way out.

For the sake of simplicity, let us assume small angle

scatterings, and the propagation of a single particleW p4̄
12̄
≈

w4̄
2̄ δ(p− p1), then

pµ∂µf
f (x, p) =

1

2
Q2V4 f i(x̃1, p) Pf w4̄

2̄ . (31)

The cumulative effect of all particles which can reach the
ST point x in a collision time, leads to a change into the
direction given by dσµ. The transition rate, w4̄

2̄ can be

estimated as 〈σvrel〉 ∼ pµ/p0, when eq. (31) yields to

pµ∂µf
f (x, p) = f i(x̃1, p)

{

1

2
Q2V4 Pf dσµpµ/p

0

}

.

(32)
As we mentioned, the spatial variation of the phase-

space distribution cannot be neglected in rapid dynamical
processes as the FO, and this brings in a direction of the
dominant change, dσµ.

Let us now consider the FO situation, where we have a
directed process in a layer. The dominant change happens
in the direction of the normal of the FO hypersurface, dσµ

(where dσµ dσµ = ±1). We can decompose the 4-vector,
pν on the l.h.s. of the above equations into four orthogonal
directions:

pν = (pµdσµ)dσ
ν + (pµdσ1µ)dσ

ν
1

+(pµdσ2µ)dσ
ν
2 + (pµdσ3µ)dσ

ν
3 , (33)

where the 4-vectors, dσν1 , dσ
ν
2 , and dσν3 , are tangent to

the hypersurface and orthogonal to the normal, dσν . This
leads to

pν∂νf(x, p) =
[

(pµdσµ)dσ
ν + (pµdσ1µ)dσ

ν
1

+(pµdσ2µ)dσ
ν
2 + (pµdσ3µ)dσ

ν
3

]

∂νf(x, p) . (34)

Here we assumed that the change happens in the direction
of the normal and is negligible along the hypersurface of
the front, thus the last three terms can be neglected:

pν∂νf(x, p) ≈ (pµdσµ) dσ
ν∂ν f(x, p) .

Inserting the above equation into (32) yields a kinetic
equation describing the directional derivative of the distri-
bution function in the direction of the dominant change,
dσµ as

dσµ∂µf
f (x, p) = f i(x̃1, p) P ∗

esc , (35)

where the escape probability depends on the ST co-
ordinates, on the interacting part of the PS distribu-
tion, on the transfer properties and the FO probabil-
ity: P ∗

esc(x, p, f
i,dσ,w,Pf ). The x̃1 in this case means

x̃1 = x− dσµλµ, where λµ is a four-vector of the m.f.p.
This x̃1 in the argument of the distribution function

on the r.h.s. of eq. (35) is extremely important. Certainly,
we can repeat all the steps from eq. (28) to eq. (35) based
on the BTE amd the result will be the same except for
the delocalization of f on the r.h.s. This x−dσµλµ depen-
dence of the distribution function reflects the FO property
which was discussed at the beginning of this section and
illustrated in fig. 2 —the collision rate at some point x,
and, correspondingly, the number of particles, which will
freeze out after this collision, feels the properties of the
matter deeper (by about one m.f.p.) inside the interacting
matter.

The derivation above did neglect several details and
features; however, it reflects the basic structure of ad hoc
kinetic FO models [3–6]. In these models the infinitely
long FO was studied, and therefore the delocalization of
eq. (35) was not so important. For the FO modeling in the
finite layer [22] this effect will cause a substantial differ-
ence making FO faster.

7 Escape probability

The escape probability in eq. (35) can be estimated based
on fundamental physical principles, like is done in the
above-mentioned works. The approach can, nevertheless,
be improved if we take into consideration the origin of
the above derivation, especially the requirement of full
covariance of the model and the requirement that the FO
process may point in any space-time direction. The first
significant advances, where these principles were applied,
are presented in [7]. It incorporates the achievements of
recent years, by cutting negative contributions in the FO
density [15] and making the FO direction dependent [3].
Here we just present briefly a direct estimate for the es-
cape probability [23,24].

The escape probability includes the FO probability,
which indicates the proportion of the outgoing (gain) par-
ticles not to collide anymore. The probability not to collide
with anything on the way out, reasonably should depend
on the number of particles, which are in the way of a par-
ticle moving outwards in the direction ~p/p, across a FO
layer of estimated thickness L (representing the fact that



72 The European Physical Journal A

we have a finite number of particles on the way out to
collide with [4]). If we are in this FO layer and progressed
from the beginning of the layer to a position xµ, there is
still

L− xµdσµ
cosΘ

distance ahead of us, where Θ is an angle between the nor-
mal vector and ~p/p. We assume then that the FO proba-
bility is inversely proportional to some power of this quan-
tity [23,24]. Thus,

P ∗

esc =
1

λ(x̄1)

(

L

L− xµdσµ

)a

(cosΘ)
a
Θ(pµdσµ) , (36)

where the power a is influencing the FO profile across the
front, and the cut factor is eliminating negative contribu-
tions to FO. In papers [3–6] the authors have used a = 1,
and modeled FO in an infinite layer, i.e. in the L → ∞
limit. Furthermore, they were using a constant character-
istic length λ instead of λ(x̄1):

P ∗

esc =
cosΘ

λ
Θ(pµdσµ) . (37)

Comparing eqs. (36) and (37) one can see that now we
replace the constant characteristic length λ, which was
clearly oversimplifying the situation, with two factors.
The first is the collision rate, which is proportional with

1
λ(x̄1)

≈ 〈n(x̄1)σ〉 , and this does not tend to zero even if

we reach the outside boundary of the FO layer, as this pa-
rameter is characteristic to the interior region at x̄1. The
other is the generalized FO probability, which depends on
the direction of the outgoing particle and on the number
of interacting particles left in the way to collide with, i.e.
∝ L

L−x
, where we have fixed dσµ = (0, 1, 0, 0). So, we have

generalized eq. (37) by replacing

λ→ λ′(x) = λ(x̄1)
L− x

L
. (38)

Now the new characteristic length λ′(x) gradually de-
creases as FO proceeds and the number of interacting par-
ticles becomes smaller and smaller, and goes to 0 when the
FO is finished, as was discussed in sect. 5.

The simple angular factor, cosΘ, maximizes the FO
probability of those particles which propagate in the direc-
tion closest to the normal of the layer, dσµ. The quantities,
cosΘ = px/|~p | for FO in the x-direction and cosΘ = 1
for FO in the t-direction, are not Lorentz invariant. There-
fore, to make our description completely invariant we shall

generalize it to
pµdσµ
pµuµ

∼ cosΘ.

So, we write the invariant escape probability, within
the FO layer covering both the time-like and space-like
parts of the layer [24], as

P ∗

esc =
1

λ(x̄1)

(

L

L− xµdσµ

)a(
pµdσµ
pµuµ

)a

Θ(pµdσµ) .

(39)
If we take the four-velocity equal to uµ = (1, 0, 0, 0),

in the Rest Frame of the Front (RFF), i.e. where dσµ =

(1, 0, 0, 0), then the momentum-dependent part of the es-
cape probability, P (p), is unity. Otherwise, in the Rest
Frame of the Gas (RFG), where uµ = (1, 0, 0, 0), the
escape probability P (p) is P (p) = pµdσµ Θ(pµdσµ)/p

0.
More detailed investigation about escape probability P (p)
for different dσµ can be found in [7].

To calculate the parameters of the normal vector dσµ
for different cases listed above, we simply make use of the
Lorentz transformation. The normal vector of the time-
like part of the FO hypersurface may be defined as the
local t′-axis, while the normal vector for the space-like
part may be defined as the local x′-axis. As the dσµ nor-
mal vector is normalized to unity its components may be
interpreted in terms of γσ and vσ, as dσµ = γσ(1, vσ, 0, 0),
where γσ = 1√

1−v2
σ

for time-like normals and γσ = 1√
v2
σ−1

for space-like normals.

The detailed results of the application of this covariant
escape probability will be presented elsewhere [22].

In refs. [4,5] the post-FO distribution was evaluated
for space-like gradual FO in a kinetic model. Initially we
had an equilibrated, interacting PS distribution, fint(p, x),
and an escape probability, similar to eq. (39), but simpli-
fied one. It was dependent on the angle of the two vectors
only. After some small fraction of particles were frozen
out as the FO process progressed in the front, the inter-
acting component were re-equilibrated with smaller par-
ticle number, smaller energy and momentum to account
for the quantities carried away by the frozen-out parti-
cles. This was then repeated many times in small steps
along the FO front and the frozen-out particles were ac-
cumulated in the post-FO PS distribution, ffree. The re-
sulting distribution was highly anisotropic and obviously
non-equilibrated. The details of the post-FO distribution
depend on the details of the escape probability, and on
the level of re-equilibration of the remaining, interacting
component.

Bugaev assumed earlier [15] (see also ref. [25]), that
the post-FO distribution is a (sharply cut) “Cut Jüttner”
distribution, but the above-mentioned model shows that
this can only be obtained if re-equilibration is not tak-
ing place. The kinetic model provided an asymmetric but
smooth PS distribution [4], while the escape probabil-
ity (39) yields a somewhat different, but also smooth PS
distribution [24]. These can be well approximated by the
“Canceling Jüttner” distribution [26].

In ref. [6] the same infinite 1D model (as in refs. [4,5])
was applied for the FO through the layer with time-like
normal vector. The model, in this case, can be solved ana-
lytically (since cosΘ ≡ 1) and, thus, the exact form of the
post-FO distribution for pions and protons was obtained.
Although analytical expressions for these distribution are
different from the thermal Jüttner distribution, the forms
of the functions are very similar for intermediate and high
momenta. Deviations at the low momenta seem to be due
to infinite long FO (they become much smaller for the es-
cape probability (39), modeling FO in a finite layer) and
to the 1D character of the model [24].
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8 Conclusions

The FO process was discussed in the 4-dimensional space-
time in a layer of finite thickness. Arising from the physical
process this layer is directed to, it has an inside and out-
side boundary, which are not identical. The processes in
the layer are not isotropic, they must be sensitive to the di-
rection of the layer. It is shown that, as a consequence, the
basic assumptions of the Boltzmann Transport Equation
are not satisfied in this layer, and the equation should be
modified. It is also shown that earlier, ad hoc kinetic mod-
els of the FO process, can be obtained from this approach
in a fully covariant way, and freeze out in space-like and
time-like directions can be handled on the same covariant
footing.
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